【引用本文】 陈宗定, 许春雪, 安子怡, 等. 土壤碳赋存形态及分析方法研究进展[J]. 岩矿测试, 2019, 38(2): 233-244. doi: 10.15898/j.cnki.11-2131/td.201709270148
CHEN Zong-ding, XU Chun-xue, AN Zi-yi, et al. Research Progress on Fraction and Analysis Methods of Soil Carbon[J]. Rock and Mineral Analysis, 2019, 38(2): 233-244. doi: 10.15898/j.cnki.11-2131/td.201709270148

土壤碳赋存形态及分析方法研究进展

国家地质实验测试中心, 北京 100037

收稿日期: 2017-09-27  修回日期: 2018-06-19  接受日期: 2018-06-22

基金项目: 中国地质科学院基本科研业务费项目(YYWF201622);国家重点研发计划项目(2016YFF0201103)

作者简介: 陈宗定, 硕士, 主要从事地质矿产标准化研究。E-mail:ding_5424@126.com

Research Progress on Fraction and Analysis Methods of Soil Carbon

National Research Center for Geoanalysis, Beijing 100037, China

Received Date: 2017-09-27
Revised Date: 2018-06-19
Accepted Date: 2018-06-22

摘要:研究土壤碳的赋存形态不仅利于了解碳的迁移转化规律,而且可以为土壤固碳提供科学依据。目前对各形态碳(尤其是有机碳中的慢性及惰性组分)缺乏系统的分析研究。基于此,本文综述了土壤中碳的主要赋存形态,各形态碳的组成、分布及作用,土壤碳的分析、分离方法。土壤无机碳储量约占全球总碳库的38%,赋存形态以碳酸盐为主。土壤有机碳主要分为活性碳库(周转期0.1~4.5年)、慢性碳库(周转期5~50年)和惰性碳库(周转期50~3000年)。其中可溶性有机碳、易氧化有机碳和微生物量碳属于活性有机碳库这一范畴,可以较为灵敏地反映土壤理化性质的微小变化;轻组有机碳和颗粒有机碳属于慢性有机碳库,可作为土壤有机质周转变化的重要指标;重组有机碳和矿物结合态有机碳属于惰性有机碳库,是土壤有机碳固持的重要机制之一。目前土壤中碳酸盐测定方法主要为气量法和滴定法;有机碳分析方法包括容量法、比色法和重量法。本文提出,今后应加强对无机碳及有机碳中的惰性组分研究,同时对土壤有机碳各组分概念及测定方法进行统一,并开展不同地域、不同土壤类型、不同浓度的土壤碳形态标准物质研制工作。

关键词: 土壤碳, 赋存形态, 分布特征, 分析方法, 分离方法, 标准物质

要点

(1) 总结了土壤中无机碳和有机碳的主要赋存形态和各形态碳的组成、分布及作用。

(2) 评述了目前国内外土壤中不同形态碳的分析、分离方法。

(3) 提出应统一土壤中不同形态碳的概念和分析方法,加强相关标准物质研制。

Research Progress on Fraction and Analysis Methods of Soil Carbon

ABSTRACT

BACKGROUND:

Research on fractions of soil carbon can not only be helpful to realize the migration and transformation of carbon, but also provide the scientific basis for reducing global carbon emissions. There is lack of systematic research on organic carbon fractions, especially the chronic and inert fractions.

OBJECTIVES:

To lay the foundation for future research through the summary of previous research on composition, distribution and roles of different carbon fractions.

METHODS:

It proposes development directions for future works through a summary of previous research.

RESULTS:

The main occurrence form of inorganic carbon was carbonate. The soil organic carbon pool covered the activated carbon pool (turnover time:0.1-4.5 year), chronic carbon pool (turnover time:5-50 year) and inert carbon pool (turnover time:50-3000 year). Previous studies showed that the activated carbon pool, which contained dissolved organic carbon, labile organic carbon and microbial biomass carbon, could reflect the small change of physical and chemical properties of soil sensitivity. Chronic carbon, as the important indicator of the conversion of organic matters in soil, contained light fraction organic carbon and particulate organic carbon. Heavy fraction organic carbon and mineral-associated organic carbon belonged to the inert carbon pool, which was one of the important mechanisms of organic carbon sequestration in soil. Carbonate in soil was always analyzed by gasometric method or titrimetry, while the organic carbon tended to be measured by the volumetric method, colorimetric method or gravimetric method.

CONCLUSIONS:

Study on soil inorganic carbon and inert organic carbon should be strengthened. As far as the analysis methods, 'ramped combustion method' should be researched further. The in-situ measurement method of soil carbon (including organic carbon and inorganic carbon) also needs to be developed. Reference materials of soil carbon fractions with different soil type and different concentration are also necessary.

KEY WORDS: soil carbon, fractions, distribution characteristics, analysis method, separation method, reference material

HIGHLIGHTS

(1) The main fractions of organic carbon and inorganic carbon in soil and their components, distributions and roles were summarized.

(2) Analysis and separation methods of different soil carbon fractions both at home and abroad were reviewed.

(3) It was proposed that the concepts and analysis methods of different soil carbon fractions should be unified, and it should be strengthened to develop the relevant reference materials.

本文参考文献

[1]

Mohamed A, Mohamed E, Abd-ElAziz B, et al. Effect of land-use changes and site variables on surface soil organic carbon pool at Mediterranean region[J].Journal of African Earth Sciences, 2016, 114: 78-84. doi: 10.1016/j.jafrearsci.2015.11.020

[2]

Marty C, Houle D, Gagnon C, et al. Variation in stocks and distribution of organic C in soils across 21 Eastern Canadian temperate and boreal forests[J]. Forest Ecology & Management, 2015, 345: 29-38.

[3]

Baldock J A.Composition and Cycling of Organic Carbon in Soil[M]//Nutrient Cycling in Terrestrial Ecosystems.Springer Berlin Heidelberg, 2007:826-844.

[4] Adenuga O S,Ajiboye G A,Shade J. Siol Carbon[M] . : Springer International Publishing Swizerland, 2014: 27-28.
[5]

Wang X J, Xu M G, Wang J P, et al. Fertilization enhan-cing carbon sequestration as carbonate in arid cropland:Assessments of long-term experiments in Northern China[J].Plant and Soil, 2014, 380(1-2): 89-100. doi: 10.1007/s11104-014-2077-x

[6]

Batjies N H. Total carbon and nitrogen in the soil of the world[J].European Journal of Soil Science, 1996, 47(2): 151-163. doi: 10.1111/ejs.1996.47.issue-2

[7]

Zhang F, Wang X J, Guo T W, et al. Soil organic and inorganic carbon in the loess profiles of Lanzhou area:Implications of deep soils[J].Catena, 2015, 126: 68-74. doi: 10.1016/j.catena.2014.10.031

[8]

Wu H B, Guo Z T, Gao Q, et al. Distribution of soil inorganic carbon storage and its changes due to agricultural land use activity in China[J].Agriculture, Ecosystems and Environment, 2009, 129(4): 413-421. doi: 10.1016/j.agee.2008.10.020

[9]

马逸麟, 郄海满, 彭晓玫, 等. 江西省鄱阳湖及周边经济区土壤有机碳储量分布特征[J]. 岩矿测试, 2014, 34(2): 246-255. doi: 10.3969/j.issn.0254-5357.2014.02.016

Ma Y L, Qie H M, Peng X M, et al. The reserve distribution characteristics of organic carbon in soil from Poyang Lake and the surrounding economic region[J]. Rock and Mineral Analysis, 2014, 34(2): 246-255. doi: 10.3969/j.issn.0254-5357.2014.02.016

[10]

Tan W F, Zhang R, Cao H, et al. Soil inorganic carbon stock under different soil types and land uses on the Loess Plateau region of China[J]. Catena, 2014, 121: 22-30.

[11]

Li Z P, Han F X, Su Y, et al. Assessment of soil organic and carbonate carbon storage in China[J].Geoderma, 2007, 138(1-2): 119-126. doi: 10.1016/j.geoderma.2006.11.007

[12]

Shi H J, Wang X J, Zhao Y J, et al. Relationship between soil inorganic carbon and organic carbon in the wheat-maize cropland of the North China Plain[J]. Plant & Soil, 2017, 18(1-2): 1-14.

[13]

Xie J X, Li Y, Zhai C X, et al. CO2 absorption by alkaline soils and its implication to the global carbon cycle[J].Environmental Geology, 2009, 56(5): 953-961. doi: 10.1007/s00254-008-1197-0

[14]

Xu N Z, Zhang T L, Wang X X, et al. Statistical calculation of soil inorganic carbon stock in the Yangtze Delta region[J]. Resources and Environment in the Yangtze Basin, 2009, 18(11): 1038-1044.

[15]

Alireza R, Ahmad H, Shahla M, et al. Organic and inorganic carbon storage in soils along an arid to dry sub-humid climosequence in northwest of Iran[J].Cetena, 2017, 153: 66-74. doi: 10.1016/j.catena.2017.01.035

[16]

Zhao W, Zhang R, Huang C, et al. Effect of different vegetation cover on the vertical distribution of soil organic and inorganic carbon in the Zhifanggou watershed on the loess plateau[J]. Catena, 2016, 139(3): 191-198.

[17]

Mi N W, Shao Q, Liu J Y, et al. Soil inorganic carbon storage pattern in China[J].Global Change Biology, 2008, 14(10): 2380-2387. doi: 10.1111/gcb.2008.14.issue-10

[18]

解宪丽, 孙波, 周慧珍, 等. 中国土壤有机碳密度和储量的估算与空间分布分析[J]. 土壤学报, 2004, 41(1): 35-43. doi: 10.3321/j.issn:0564-3929.2004.01.006

Xie X L, Sun B, Zhou H Z, et al. Organic carbon density and storage in soils of China and spatial analysis[J].Acta Preologica Sinica, 2004, 41(1): 35-43. doi: 10.3321/j.issn:0564-3929.2004.01.006

[19]

Wang Y G, Li Y, Ye X H, et al. Profile storage of organic/inorganic carbon in soil:From forest to desert[J].Science of the Total Environment, 2010, 408(8): 1925-1931. doi: 10.1016/j.scitotenv.2010.01.015

[20]

Syswerda S P, Corbin A T, Mokma D L, et al. Agri-cultural management and soil carbon storage in surface vs. deep layers[J].Soil Science Society of America Journal, 2011, 75(1): 92-101. doi: 10.2136/sssaj2009.0414

[21]

Tong X G, Xu M G, Zhang W J, et al. Influence of long-term fertilization on content and distribution of organic carbon in particle-size fractions of red soil and fluvo-aquic soil in China[J]. Scientia Agricultura Sinica, 2008, 41(11): 3664-3671.

[22]

Chen L C, Hua W, Xin Y, et al. Recovery time of soil carbon pools of conversional Chinese fir plantations from broadleaved forests in subtropical regions, China[J].Science of the Total Environment, 2017, 587-588: 296-304. doi: 10.1016/j.scitotenv.2017.02.140

[23]

Yu P, Han K, Li Q, et al. Soil organic carbon fractions are affected by different land uses in an agro-pastoral transitional zone in Northeastern China[J]. Ecological Indicators, 2016, 73: 331-337.

[24]

Sharma V, Hussain S, Sharma K R, et al. Labile carbon pools and soil organic carbon stocks in the foothill Himalayas under different land use systems[J].Geoderma, 2014, 232-234: 81-87. doi: 10.1016/j.geoderma.2014.04.039

[25]

Han L, Sun K, Jin J, et al. Some concepts of soil organic carbon characteristics and mineral interaction from a review of literature[J]. Soil Biology & Biochemistry, 2016, 94: 107-121.

[26]

Kucharik C J, Foley J A, Delire C, et al. Testing the performance of a dynamic global ecosystem model:Water balance carbon balance and vegetation structure[J].Global Biogeochemical Cycles, 2000, 14(3): 795-825. doi: 10.1029/1999GB001138

[27]

Zhu L, Hu N, Yang M, et al. Effects of different tillage and straw return on soil organic carbon in a rice-wheat rotation system[J].PloS One, 2014, 9(2): e88900. doi: 10.1371/journal.pone.0088900

[28]

沈艳.岩溶区不同土地利用方式土壤碳形态特征的研究[D].重庆: 西南大学, 2013.

Shen Y.Features of the Soil Organic Matter Fractions of Different Land Use Patterns in the Karst Areas[D].Chongqing: Southwest University, 2013.

[29]

Leifeld J, K?gel-Knabner I. Soil organic matter fractions as early indicators for carbon stock changes under different land-use?[J].Geoderma, 2005, 124(1-2): 143-155. doi: 10.1016/j.geoderma.2004.04.009

[30]

Song Y, Song C, Yang G, et al. Changes in labile organic carbon fractions and soil enzyme activities after marshland reclamation and restoration in the Sanjiang Plain in Northeast China[J].Environmental Management, 2012, 50(3): 418. doi: 10.1007/s00267-012-9890-x

[31]

Jandl R, Sollins P. Water-extractable soil carbon in relation to the below ground carbon cycle[J]. Biology and Fertility, 1997, 25(2): 196-201.

[32]

Zhang J, Song C, Wang S, et al. Dynamics of soil organic carbon and its fractions after abandonment of cultivated wetlands in Northeast China[J]. Soil & Tillage Research, 2007, 96(1-2): 350-360.

[33]

Biederbeck V O, Janzen H H, Campbell C A, et al. Labile soil organic matter as influenced by cropping practices in an arid environment[J]. Soil Biology & Biochemistry, 1994, 26(12): 1647-1656.

[34]

Treseder K K.Nitrogen Additions and Microbial Biomass: A Global Meta-analysis[C]//AGU Fall Meeting Abstracts, 2008.

[35]

Wallenstein M D, Schlesinger W H, Rhee S K, et al. Effects of nitrogen fertilization on soil microbial communities[C]//Geophysical Research Abstracts.European Geophysical Society, 2003: 13087.

[36]

Plaza-Bonilla D, álvaro-Fuentes J, Cantero-Martínez C, et al. Identifying soil organic carbon fractions sensitive to agricultural management practices[J]. Soil & Tillage Research, 2014, 139: 19-22.

[37]

Li S, Zhang S, Pu Y, et al. Dynamics of soil labile organic carbon fractions and C-cycle enzyme activities under straw mulch in Chengdu Plain[J]. Soil & Tillage Research, 2016, 155: 289-297.

[38]

Wang Z C, Liu S S, Huang C, et al. Impact of land use change on profile distributions of organic carbon fractions in peat and mineral soils in Northeast China[J].Catena, 2017, 152: 1-8. doi: 10.1016/j.catena.2016.12.022

[39]

Cambardella C A, Elliott E T. Particulate soil organic-matter changes across a grassland cultivation sequence[J].Soil Science Society of America Journal, 1992, 56(3): 777-783. doi: 10.2136/sssaj1992.03615995005600030017x

[40]

Solomon D, Fritzsche F, Tekalign M, et al. Soil organic matter composition in the sub-humid Ethiopian highlands as influenced by deforestation and agricultural management[J].Soil Science Society of America Journal, 2002, 66(1): 68-82. doi: 10.2136/sssaj2002.6800

[41]

Smith P. Carbon sequestration in croplands:The potential in Europe and the global context[J].European Journal of Agronomy, 2004, 20(3): 229-236. doi: 10.1016/j.eja.2003.08.002

[42]

Franzluebbers A J, Stuedemann J A. Particulate and non-particulate fractions of soil organic carbon under pastures in the Southern Piedmont USA[J]. Environmental Pollution, 2002, 116(3): S53-S62.

[43]

Gregorich B G, Beare M I J, Mckim U F, et al. Chemical and biological characteristics of physically uncomplexed organic matter[J].Soil Science Society of America Journal, 2006, 70(3): 975-985. doi: 10.2136/sssaj2005.0116

[44]

Zeller B, Dambrine E. Coarse particulate organic matter is the primary source of mineral N in the topsoil of three beech forests[J].Soil Biology and Biochemistry, 2011, 43(3): 542-550. doi: 10.1016/j.soilbio.2010.11.019

[45]

Falloon P D, Smith P. Modelling refractory soil organic matter[J]. Biology and Fertility of Soils, 2000, 30(5): 388-398.

[46]

Conant R T, Six J, Paustian K, et al. Land use effects on soil carbon fractions in the Southeastern United States.Ⅰ.Management-intensive versus extensive grazing[J].Biology and Fertility of Soils, 2003, 38(6): 386-392. doi: 10.1007/s00374-003-0652-z

[47]

Zougagh M, Rios A, Valcarcel M, et al. Direct determination of total carbonate salts in soil samples by continuous-flow piezoelectric detection[J]. Talanta, 2005, 65(1): 29-35.

[48]

Sherrod L A, Dunn G, Peterson G A, et al. Inorganic carbon analysis by modified pressure-calcimeter method[J].Soil Science, 2002, 66(1): 299-305. doi: 10.2136/sssaj2002.2990

[49]

王莲莲, 杨学云, 杨文静, 等. 土壤碳酸盐几种测定方法的比较[J]. 西北农业学报, 2013, 22(5): 144-150.

Wang L L, Yang X Y, Yang W J, et al. Comparison of three methods for determination of soil carbonate[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2013, 22(5): 144-150.

[50]

杜森,高祥照. 土壤分析技术规范[M] . 北京: 中国农业出版社, 2006

Du S,Gao X Z. Soil Analysis Technical Specifications[M] . Beijing: China Agriculture Press, 2006
[51]

彭红翠, 肖和艾, 吴金水, 等. 土壤碳酸盐间接测定方法研究及其应用[J]. 土壤, 2006, 38(4): 477-482. doi: 10.3321/j.issn:0253-9829.2006.04.021

Peng H C, Xiao H A, Wu J S, et al. An indirect method for determination of soil total carbonate[J].Soils, 2006, 38(4): 477-482. doi: 10.3321/j.issn:0253-9829.2006.04.021

[52]

韩文娟.新疆天山北坡典型草地土壤无机碳特征[D].乌鲁木齐: 新疆农业大学, 2015.

Han W J.Soil Inorganic Carbon Distribution Character-istics in Typical Grassland in North Slope of Tianshan Mountains of Xinjiang[D].Urumqi: Xinjiang Agricultural University, 2015.

[53]

Bisutti I, Hilke I, Schumacher J, et al. A novel single-run dual temperature combustion (SRDTC) method for the determination of organic, inorganic and total carbon in soil samples[J].Talanta, 2007, 71(2): 521. doi: 10.1016/j.talanta.2006.04.022

[54]

Apesteguia M, Plante A F, Virto I, et al. Methods assessment for organic and inorganic carbon quantification in calcareous soils of the Mediterranean region[J].Geoderma Regional, 2018, 12: 39-48. doi: 10.1016/j.geodrs.2017.12.001

[55] Kimble J M,Lal R,Follett R F. Assessment Methods for Soil Carbon[M] . Boca Raton: Lewis Publishers, 2001
[56]

Bisutti I, Hilke I, Raessler M, et al. Determination of total organic carbon-An overview of current methods[J].TrAC Trends in Analytical Chemistry, 2004, 23(10-11): 716-726. doi: 10.1016/j.trac.2004.09.003

[57]

杨剑虹,王成林,代亨林. 土壤农化分析与环境监测[M] . 北京: 中国大地出版社, 2008: 27-34.

Yang J H,Wang C L,Dai H L. Chemical Analysis and Environmental Monitoring of Soil[M] . Beijing: China Earth Press, 2008: 27-34.
[58]

Ramnarine R, Voroney R P, Wagner R C, et al. Carbon-ate removal by acid fumigation for measuring the C of soil organic carbon[J].Canadian Journal of Soil Science, 2011, 91(2): 247-250. doi: 10.4141/cjss10066

[59]

Senesi G S, Senesi N. Laser-induced breakdown spectro-scopy (LIBS) to measure quantitatively soil carbon with emphasis on soil organic carbon:A review[J].Analytica Chimica Acta, 2016, 938: 7-17. doi: 10.1016/j.aca.2016.07.039

[60]

Benbi D K, Brar K, Toor A S, et al. Total and labile pools of soil organic carbon in cultivated and undisturbed soils in Northern India[J].Geoderma, 2015, 237-238: 149-158. doi: 10.1016/j.geoderma.2014.09.002

[61]

Gong W, Hu T X, Wang J Y, et al. Soil carbon pool and fertility under natural evergreen broadleaved forest and its artificial regeneration forests in Southern Sichuan Province, China[J].Acta Ecologica Sinica, 2008, 28(6): 2536-2545. doi: 10.1016/S1872-2032(08)60060-8

[62]

Luo S, Zhu L, Liu J, et al. Sensitivity of soil organic carbon stocks and fractions to soil surface mulching in semiarid farmland[J].European Journal of Soil Biology, 2015, 67: 35-42. doi: 10.1016/j.ejsobi.2015.01.004

[63]

Loginow W, Wisniewski W, Gonet S S, et al. Fraction-ation of organic carbon based on susceptibility to oxidation[J].Polish Journal of Soil Science, 1987, 20(1): 47-52.

[64]

Blair G J, Lefroy R D B, Lisle L, et al. Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems[J].Australian Journal of Agricultural Research, 1995, 46(7): 1459-1466. doi: 10.1071/AR9951459

[65]

Weil R R, Islam K R, Stine M A, et al. Estimating active carbon for soil quality assessment:A simplified method for laboratory and field use[J].American Journal of Alternative Agriculture, 2003, 18(1): 3-17. doi: 10.1079/AJAA2003003

[66]

党亚爱, 李世清, 王国栋, 等. 黄土高原典型土壤有机碳和微生物碳分布特征的研究[J]. 自然资源学报, 2007, 22(6): 936-945. doi: 10.3321/j.issn:1000-3037.2007.06.010

Dang Y A, Li S Q, Wang G D, et al. Distribution characteristics of soil organic carbon and microbial biomass carbon on the Loess Plateau[J].Journal of Natural Resources, 2007, 22(6): 936-945. doi: 10.3321/j.issn:1000-3037.2007.06.010

[67]

Shahid M, Nayak A K, Puree C, et al. Carbon and nitro-gen fractions and stocks under 41 years of chemical and organic fertilization in a sub-humid tropical rice soil[J]. Soil & Tillage Research, 2017, 170: 136-146.

[68]

Qi R, Li J, Lin Z, et al. Temperature effects on soil organic carbon, soil labile organic carbon fractions, and soil enzyme activities under long-term fertilization regimes[J].Applied Soil Ecology, 2016, 102: 36-45. doi: 10.1016/j.apsoil.2016.02.004

[69]

Six J, Eilliot E T, Paustian K, et al. Aggregation and soil organic matter accumulation in cultivated and native grassland soils[J].Soil Science Society of America Journal, 1998, 62(5): 1367-1377. doi: 10.2136/sssaj1998.03615995006200050032x

[70]

Wang X N, Geng Y Q, Yu X X, et al. Soil total organic carbon and soil labile organic carbon fraction under quercus variabilis & pinus tabulaeformis forest[J]. Chinese Journal of Soil Science, 2012, 43(3): 604-609.

[71]

Paul E A, Morris S J, Conant R T, et al. Does the acid hydrolysis-incubation method measure meaningful soil organic carbon pools[J].Soil Science Society of America Journal, 2006, 70(3): 1023-1035. doi: 10.2136/sssaj2005.0103

[72]

Ramnarine R, Voroney R P, Dunfield K E, et al. Characterization of the heavy, hydrolysable and non-hydrolysable fractions of soil organic carbon in conventional and no-tillage soils[J]. Soil & Tillage Research, 2018, 181: 144-151.

[73]

Li S Q, Zheng X H, Liu C Y, et al. Influences of observation method, season, soil depth, land use and management practice on soil dissolvable organic carbon concentrations:A meta-analysis[J].Science of the Total Environment, 2018, 631-632: 105-114. doi: 10.1016/j.scitotenv.2018.02.238

[74]

Andres G D, Maria J M, Blanca S, et al. Labile and stable soil organic carbon and physical improvements using ground covers in vineyards from Central Spain[J].Science of the Total Environment, 2018, 621: 387-397. doi: 10.1016/j.scitotenv.2017.11.240

[75]

Lagomarsino A, Benedetti A, Marinari S, et al. Soil organic C variability and microbial functions in a Mediterranean agro-forest ecosystem[J].Biology and Fertility of Soils, 2011, 47(3): 283-291. doi: 10.1007/s00374-010-0530-4

[76]

Roscoe R, Buurman P. Tillage effects on soil organic matter in density fractions of a Cerrado Oxisol[J]. Soil & Tillage Research, 2003, 70(2): 107-119.

[77]

徐嘉晖, 高雷, 孙颖, 等. 大兴安岭森林土壤矿物结合态有机碳与黑碳的分布及土壤固碳潜力[J]. 土壤学报, 2018, 55(1): 236-246.

Xu J H, Gao L, Sun Y, et al. Distribution of mineral-bonded organic carbon and black carbon in forest soils of Great Xing'an Mountains, China and carbon sequestration potential of the soils[J]. Acta Pedological Sinica, 2018, 55(1): 236-246.

相似文献(共20条)

[1]

邓天龙, 吴怡, 徐青, 廖梦霞. 水环境中氮磷形态分析方法研究进展. 岩矿测试, 2008, 27(2): 137-141.

[2]

邓天龙, 王爽. 水环境中苯系污染物的分析研究进展. 岩矿测试, 2008, 27(2): 141-145.

[3]

李曼, 王连和. 区域地球化学样品分析质量管理计算机控制. 岩矿测试, 2008, 27(3): 219-222.

[4]

蔡玉曼. 硅钼蓝分光光度法测定钛铁矿中二氧化硅不确定度评定. 岩矿测试, 2008, 27(2): 123-126.

[5]

吴怡, 邓天龙, 徐青, 郭亚飞, 廖梦霞. 水环境中磷的赋存形态及其分析方法研究进展. 岩矿测试, 2010, 29(5): 557-564.

[6]

刘曙, 李晨, 诸秀芬, 周海明. 上海口岸进口煤炭总汞含量的分布特征. 岩矿测试, 2014, 33(5): 730-736.

[7]

葛晓立, 刘浏, 徐清, 刘晓端, 王英华. 密云水库沉积物中磷的形态和分布特征. 岩矿测试, 2003, (2): 81-85.

[8]

杨杰东, 盛雪芬. 黄土和沉积岩中分离方解石和白云石的方法实验. 岩矿测试, 2000, (4): 264-267.

[9]

刘曙, 沈劼, 周海明, 诸秀芬, 朱志秀, 李晨, 兰超. 电感耦合等离子体质谱-原子荧光光谱法研究上海口岸进口印度尼西亚煤炭微量元素的赋存形态特征. 岩矿测试, 2015, 34(4): 436-441. doi: 10.15898/j.cnki.11-2131/td.2015.04.010

[10]

田芹, 吴淑琪, 佟玲, 罗代洪. 中国典型类型土壤中有机氯农药和多氯联苯成分分析标准物质的研制. 岩矿测试, 2015, 34(2): 238-244. doi: 10.15898/j.cnki.11-2131/td.2015.02.015

[11]

王毅民, 高玉淑, 王晓红. 中国地质标准物质研制和标准方法制定的成果与思考. 岩矿测试, 2006, 25(1): 55-63.

[12]

史冰洁, 李小娜, 帅琴, 庞绪贵, 代杰瑞, 胡圣虹. 山东烟台地区苹果果园土壤中DDTs和HCHs残留分布特征与来源解析. 岩矿测试, 2012, 31(2): 318-324.

[13]

马逸麟, 郄海满, 彭晓玫, 江俊杰, 谢长瑜. 江西省鄱阳湖及周边经济区土壤有机碳储量分布特征. 岩矿测试, 2014, 33(2): 246-255.

[14]

刘久臣, 刘晓端, 徐 清, 汤奇峰. 上海崇明岛表层土壤重金属元素分布特征与环境地球化学基线值研究. 岩矿测试, 2010, 29(3): 245-249.

[15]

武振艳, 杨永亮, 安丽华, 焦杏春, 路国慧, 刘晓端, 徐 清, 谢文明. 新江湾城开发区表层土壤中有机氯农药和多氯联苯的分布特征. 岩矿测试, 2010, 29(3): 231-235.

[16]

时磊, 孙艳艳, 吕爱娟, 蔡小虎, 沈小明, 沈加林. 长三角部分地区土壤中22种有机氯农药的分布特征. 岩矿测试, 2016, 35(1): 75-81. doi: 10.15898/j.cnki.11-2131/td.2016.01.013

[17]

白亚之, 朱爱美, 崔菁菁, 施美娟, 高晶晶, 张俊. 中国近海沉积物氮和有机碳标准物质的研制. 岩矿测试, 2014, 33(1): 74-80.

[18]

赵志琦, 刘丛强, . 河水样品中硼的分离及其同位素组成测定. 岩矿测试, 2002, (4): 279-283.

[19]

袁建, 王亚平, 许春雪, 代阿芳, 王苏明, 安子怡. 地下水中砷形态标准物质研制. 岩矿测试, 2012, 31(2): 331-337.

[20]

许春雪, 王亚平, 张旭, 董波, 孙德忠, 安子怡. 矽线石成分分析标准物质研制. 岩矿测试, 2017, 36(4): 396-404. doi: 10.15898/j.cnki.11-2131/td.201608190123

计量
  • PDF下载量(14)
  • 文章访问量(90)
  • HTML全文浏览量(9)
  • 被引次数(0)
目录

Figures And Tables

土壤碳赋存形态及分析方法研究进展

陈宗定, 许春雪, 安子怡, 王亚平, 孙德忠, 王苏明