【引用本文】 罗飞, 巴俊杰, 苏春田, 等. 武水河上游区域土壤重金属污染风险及来源分析[J]. 岩矿测试, 2019, 38(2): 195-203. doi: 10.15898/j.cnki.11-2131/td.201806040069
LUO Fei, BA Jun-jie, SU Chun-tian, et al. Contaminant Assessment and Sources Analysis of Heavy Metals in Soils from the Upper Reaches of the Wushui River[J]. Rock and Mineral Analysis, 2019, 38(2): 195-203. doi: 10.15898/j.cnki.11-2131/td.201806040069

武水河上游区域土壤重金属污染风险及来源分析

1. 

中国地质科学院岩溶地质研究所, 自然资源部岩溶动力学重点实验室, 广西 桂林 541004

2. 

联合国教科文组织国际岩溶研究中心, 广西 桂林 541004

收稿日期: 2018-06-04  修回日期: 2018-12-13  接受日期: 2019-01-04

基金项目: 广西自然科学基金项目(2018JJA150151);中国地质调查局地质调查项目(DD20160303);桂林市科技局重大专项项目(20180101-3)

作者简介: 罗飞, 助理研究员, 主要从事岩溶水文地质环境地质研究工作。E-mail:luofei@karst.ac.cn

通信作者: 巴俊杰, 博士, 助理研究员, 从事水文地质环境地质研究工作。E-mail:bajunjie@karst.ac.cn

Contaminant Assessment and Sources Analysis of Heavy Metals in Soils from the Upper Reaches of the Wushui River

1. 

Key Laboratory of Karst Dynamics, Ministry of Land and Resources; Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin 541004, China

2. 

International Karst Research Center, UNESCO, Guilin 541004, China

Corresponding author: BA Jun-jie, bajunjie@karst.ac.cn

Received Date: 2018-06-04
Revised Date: 2018-12-13
Accepted Date: 2019-01-04

摘要:生态功能区在涵养水源、保持水土、维系生物多样性等方面具有重要的作用。本文以位于南岭生态功能区的流域——武水流域为研究对象,采集流域上游交通运输用地、采矿用地、工业用地、耕地及林地5种土地利用类型土壤样品,分析7种重金属Cd、As、Cu、Hg、Ni、Pb、Zn的含量特征,采用内梅罗综合污染指数评价重金属污染的程度,Hakanson潜在生态风险指数法评价土壤重金属潜在生态风险,并应用主成分分析法探究重金属污染的来源。研究结果显示,武水河上游地区土壤重金属Cd、As、Cu、Hg、Ni、Pb、Zn平均含量分别为1.28、72.44、54.62、0.27、68.32、72.29和158.42mg/kg,均高于土壤背景值,其中采矿用地土壤重金含量除Hg外均高于其他类型土壤。均值状态下土壤中Cd和As单因子污染指数分别为5.07、3.25,其中采矿用地中Cd单因子污染指数可达13.59;土壤重金属综合污染指数表明,采矿用地污染最为严重,其次是工业用地,林地呈安全状态。潜在生态危害指数评价结果显示,采矿用地和工业用地达到了强生态危害,其他类型土壤为轻微生态危害,而采矿用地土壤中Cd达到极强生态危害,As为强生态危害。土壤重金属来源研究结果表明,As、Cd、Cu和Zn来源于矿山开采及工业活动,Ni和Hg主要来源于成土母质,Pb则来源于交通运输。研究认为:武水流域上游区土壤重金属污染情况较为严重,Cd和As是区内主要的风险因子,主要来源于矿山开采以及工业活动。

关键词: 武水流域, 不同利用类型, 土壤重金属, 污染风险, 来源

要点

(1) 武水流域上游区不用利用类型土壤中重金属强风险因子为Cd、As。

(2) 采矿用地和工业用地土壤中重金属构成区内主要潜在生态危害。

(3) 土壤中重金属强风险因子主要来源于矿山开采及工业活动。

Contaminant Assessment and Sources Analysis of Heavy Metals in Soils from the Upper Reaches of the Wushui River

ABSTRACT

BACKGROUND:

Eco-functional areas play an important role in soil and water conservation and biodiversity conservation. The Wushui River is a watershed located in the Nanling ecological function area. However, study on the content and potential ecological risk of heavy metals in the soil of the upstream area of the watershed is scarce.

OBJECTIVES:

To investigate the degree of heavy metals pollution and the potential ecological risk of soils in the upper reaches of the Wushui River.

METHODS:

The soil samples of five land utilization types in the upper reaches of the Wushui River Basin, including mining, industrial, and cultivated land and forest, were collected to analyze the contents of seven heavy metals Cd, As, Cu, Hg, Ni, Pb and Zn in the soil. The Nemerow comprehensive pollution index was used to evaluate the degree of heavy metal pollution, and the Hakanson potential ecological risk index was used to evaluate the potential ecological risk of heavy metals in soil. Principal component analysis was used to investigate the source of heavy metal pollution.

RESULTS:

The results show that the average concentrations of Cd, As, Cu, Hg, Ni, Pb and Zn in the upper reaches of the Wushui River were 1.28, 72.44, 54.62, 0.27, 68.32, 72.29 and 158.42mg/kg, respectively, which higher than the soil background values. The contents of the heavy metals, except mercury in mining land, were higher than those in other types of soils. The single factor pollution index of heavy metals in the mean state show that Cd and As were heavy pollution elements with factors of 5.07 and 3.25, respectively. In mining land, the Cd single factor pollution index reached 13.59. Heavy metal pollution in mining land was the most serious, followed by industrial land. Forest was in a safe state. Potential ecological hazard index evaluation results showed that Cd reached a very strong ecological hazard and As was a strong ecological hazard in mining land. Mining land and industrial land reached a strong ecological hazard, industrial land reached a moderate ecological hazard, and other types of soils were slightly ecologically harmful. The results showed that As, Cd, Cu and Zn came from industrial and mining activities, Ni and Hg mainly came from parent materials, and Pb came from transportation.

CONCLUSIONS:

Heavy metal pollution of soil is relatively serious in the upstream area of the Wushui River Basin. Cd and As are the main risk factors in the area, mainly deriving from mining and industrial activities.

KEY WORDS: Wushui River Basin, different utilization types, soil heavy metal, contaminant assessment, sources

HIGHLIGHTS

(1) The strong risk factors of heavy metals in different types of soils in the upper reaches of Wushui River Basin were Cd and As.

(2) Heavy metals in the soil of mining land and industrial land constituted the main potential ecological hazards in the study area.

(3) The strong risk factors of heavy metals in soil originated mainly from mining and industrial activities.

本文参考文献

[1]

燕婷, 刘恩峰, 张恩楼, 等. 抚仙湖沉积物重金属时空变化与人为污染评价[J]. 湖泊科学, 2016, 28(1): 50-58.

Yan T, Liu E F, Zhang E L, et al. The spatio-temporal variations of heavy metals in the sediment of Fuxian Lake and the contamination assessment[J]. Journal of Lake Sciences, 2016, 28(1): 50-58.

[2]

李春芳, 曹见飞, 吕建树, 等. 不同土地利用类型土壤重金属生态风险与人体健康风险[J]. 环境科学, 2018, 39(12): 1-16. doi: 10.3969/j.issn.1673-1212.2018.12.001

Li C F, Cao J F, Lü J S, et al. Ecological risk assessment of soil heavy metals in different land use types and evaluation of human health[J].Environment Science, 2018, 39(12): 1-16. doi: 10.3969/j.issn.1673-1212.2018.12.001

[3]

安婧, 宫晓双, 陈宏伟, 等. 沈抚灌区农田土壤重金属污染时空变化特征及生态健康风险评价[J]. 农业环境科学学报, 2016, 35(1): 37-44.

An J, Gong X S, Chen H W, et al. Temporal and spatial characteristics and health risk assessments of heavy metal pollution in soils of Shenfu irrigation area[J]. Journal of Agro-Environment Science, 2016, 35(1): 37-44.

[4]

张军, 董洁, 梁青芳, 等. 宝鸡城区土壤重金属空间分布特征及生态风险评价[J]. 干旱区资源与环境, 2018, 32(10): 100-106.

Zhang J, Dong J, Liang Q F, et al. Spatial distribution and risk assessment of heavy metals in urban soils of Baoji city[J]. Journal of Arid Land Resources and Environment, 2018, 32(10): 100-106.

[5]

Cheng H X, Li M, Zhao C D, et al. Concentrations of toxic metals and ecological risk assessment for sediments of major freshwater lakes in China[J].Journal of Geochemical Exploration, 2015, 157: 15-26. doi: 10.1016/j.gexplo.2015.05.010

[6]

张倩, 陈宗娟, 彭昌盛, 等. 大港工业区土壤重金属污染及生态风险评价[J]. 环境科学, 2015, 36(11): 4232-4240.

Zhang Q, Chen Z J, Peng C S, et al. Heavy metals pollution in topsiol from Dagang industry area and its ecological risk assessment[J]. Environment Science, 2015, 36(11): 4232-4240.

[7]

张晗, 靳青文, 黄仁龙, 等. 大宝山矿区农田土壤重金属污染及其植物累积特征[J]. 土壤, 2017, 49(1): 141-149.

Zhang H, Jin Q W, Huang R L, et al. Characteristics of heavy metal pollution in agricultural soils and bioaccumulation in plants of Dabaoshan mine[J]. Soils, 2017, 49(1): 141-149.

[8]

郑堃, 任宗玲, 覃小泉, 等. 韶关工矿区水稻土和稻米中重金属污染状况及风险评价[J]. 农业环境科学学报, 2018, 37(5): 915-925.

Zheng K, Ren Z L, Qin X Q, et al. Status and risk assessment of heavy metal pollution in paddy soil and rice grains from the industrial and mining area of Shaoguan, Guangdong Province[J]. Journal of Agro-Environment Science, 2018, 37(5): 915-925.

[9]

陈莹, 陈炳辉, 邹琦, 等. 粤北大宝山AMD水-表层沉积物的重金属分布特征及其影响因素[J]. 环境科学学报, 2018, 38(1): 133-141.

Chen Y, Chen B H, Zou Q, et al. Distribution and influencing factors of heavy metals in water-sediments in Dabaoshan mine, Northern Guangdong Province[J]. Acta Scientiae Circumstantiae, 2018, 38(1): 133-141.

[10]

朱爱萍, 陈建耀, 江涛, 等. 北江流域横石河-翁江沿岸土壤重金属污染特征分析[J]. 中国环境科学, 2015, 35(2): 506-515.

Zhu A P, Chen J Y, Jiang T, et al. Characteristics analysis of heavy metal pollution in soil alongside Hengshihe and Wengjiang River in Beijiang Basin[J]. China Environmental Science, 2015, 35(2): 506-515.

[11]

付善明, 肖方, 宿文姬, 等. 基于模糊数学的广东大宝山矿横石河下游土壤重金属元素污染评价[J]. 地质通报, 2014, 33(8): 1140-1146. doi: 10.3969/j.issn.1671-2552.2014.08.007

Fu S M, Xiao F, Su W J, et al. The evaluation of heavy metals pollution in soils of the lower reaches of the Hengshi River within the Dabaoshan mining area based on fuzzy mathematics[J].Geological Bulletin of China, 2014, 33(8): 1140-1146. doi: 10.3969/j.issn.1671-2552.2014.08.007

[12]

宿文姬, 徐友宁, 凡生, 等. 广东大宝山矿区横石河沿岸水土重金属分布规律及其累积风险[J]. 地质通报, 2014, 33(8): 1231-1238. doi: 10.3969/j.issn.1671-2552.2014.08.019

Su W J, Xu Y N, Fan S, et al. The distribution regularity and accumulation risk of heavy metals in water and soil along the Hengshi River in the Dabaoshan mining area, Guangdong Province[J].Geological Bulletin of China, 2014, 33(8): 1231-1238. doi: 10.3969/j.issn.1671-2552.2014.08.019

[13]

Hakanson L. An ecological risk index for aquatic pollution control-A sediment ecological approach[J].Water Research, 1980, 14(8): 975-1001. doi: 10.1016/0043-1354(80)90143-8

[14]

潘佑民,杨国治. 湖南土壤背景值及研究方法[M] . 北京: 中国环境科学出版社, 1988: 159-233.

Pan Y M,Yang G Z. Soil Background Values and Research Methods in Hunan[M] . Beijing: China Environmental Science Press, 1988: 159-233.
[15]

吕建树, 张祖陆, 刘洋, 等. 日照市土壤重金属来源解析及环境风险评价[J]. 地理学报, 2012, 67(7): 971-984.

Lü J S, Zhang Z L, Liu Y, et al. Sources identification and hazardous risk delineation of heavy metals contamination in Rizhao city[J]. Acta Geographica Sinica, 2012, 67(7): 971-984.

[16] Wilding L P. Spatial Variability:Its Documentation, Accommodation and Implication to Soil Surveys[M] . Wageningen: PUDOC Publishers, 1985: 166-194.
[17]

郭伟, 孙文惠, 赵仁鑫, 等. 呼和浩特市不同功能区土壤重金属污染特征及评价[J]. 环境科学, 2013, 34(4): 1561-1567.

Guo W, Sun W H, Zhao R X, et al. Characteristics and evaluation of soil pollution by heavy metal in different functional zones of Hohhot[J]. Environment Science, 2013, 34(4): 1561-1567.

[18]

刘亚纳, 朱书法, 魏学锋, 等. 河南洛阳市不同功能区土壤重金属污染特征及评价[J]. 环境科学, 2016, 37(6): 2322-2328.

Liu Y N, Zhu S F, Wei X F, et al. Assessment and pollution characteristics of heavy metals in soil of different functional areas in Luoyang[J]. Environment Science, 2016, 37(6): 2322-2328.

[19]

马啸, 左锐, 王金生, 等. 沈阳浑河冲积扇土壤的重金属空间分布特征及来源[J]. 环境科学研究, 2014, 27(11): 1298-1305.

Ma X, Zuo R, Wang J S, et al. Spatial distribution and source of heavy metal in soils from alluvial and diluvial fan of Hun River in Shenyang[J].Research of Environmental Sciences, 2014, 27(11): 1298-1305.

[20]

周妍姿, 王钧, 曾辉, 等. 内蒙古土壤重金属的空间异质性及污染特征[J]. 生态环境学报, 2015, 24(8): 1381-1387.

Zhou Y Z, Wang J, Zeng H, et al. Spatial characteristics of soil heavy metal pollution in Inner Mongolia, China[J]. Ecology and Environmental Sciences, 2015, 24(8): 1381-1387.

[21]

李睿, 吴艳宏, 邴海健, 等. 青藏高原东麓贡嘎山东坡土壤中Pb的来源解析[J]. 环境科学研究, 2015, 28(9): 1439-1448.

Li R, Wu Y H, Bing H J, et al. Source identification of lead in soils on the eastern slope of Gongga Mountain, Eastern Tibetan Plateau[J]. Research of Environmental Sciences, 2015, 28(9): 1439-1448.

[22]

李清良, 吴倩, 高进波, 等. 基于小流域尺度的土壤重金属分布与土地利用相关性研究——以厦门市坂头水库流域为例[J]. 生态学报, 2015, 35(16): 5486-5494.

Li Q L, Wu Q, Gao J B, et al. Distribution of heavy metals in topsoils affected by land use patterns at a small watershed scale:A case study in the Bantou Reservoir watershed in Xiamen, China[J]. Acta Ecologica Sinica, 2015, 35(16): 5486-5494.

[23]

刘德鸿, 王发园, 周文利, 等. 洛阳市不同功能区道路灰尘重金属污染及潜在生态风险[J]. 环境科学, 2012, 33(1): 253-259.

Liu D H, Wang F Y, Zhou W L, et al. Heavy metal pollution in street dusts from different functional zones of Luoyang city and its potential ecological risk[J]. Environment Science, 2012, 33(1): 253-259.

[24]

张一修, 王济, 秦樊鑫, 等. 贵阳市道路灰尘和土壤重金属来源识别比较[J]. 环境科学学报, 2012, 32(1): 204-212.

Zhang Y X, Wang J, Qin F X, et al. Comparison of sources of metals in roda-dust and soil in Guiyang[J]. Acta Scientiae Ciecumstantiae, 2012, 32(1): 204-212.

相似文献(共17条)

[1]

梁细荣, 姚立, 田地. 电子探针背景扣除和谱线干扰修正方法的进展. 岩矿测试, 2008, 27(1): 49-54.

[2]

蔡玉曼. 硅钼蓝分光光度法测定钛铁矿中二氧化硅不确定度评定. 岩矿测试, 2008, 27(2): 123-126.

[3]

曾凡刚, 彭林, . 兰州市大气总悬浮颗粒物中有机污染物分布特征及来源. 岩矿测试, 2002, (2): 125-128.

[4]

张道来, 刘娜, 朱志刚, 路晶芳, 林学辉, 侯国华, 印萍. 山东半岛典型海岸带多环芳烃分布特征、来源解析及风险评价. 岩矿测试, 2016, 35(5): 521-529. doi: 10.15898/j.cnki.11-2131/td.2016.05.011

[5]

沈小明, 吕爱娟, 沈加林, 胡璟珂, 时磊, 蔡小虎. 长江口启东—崇明岛航道沉积物中多环芳烃分布来源及生态风险评价. 岩矿测试, 2014, 33(3): 379-385.

[6]

曾力, 唐莉. 氡的现状调查—来源,水平,检测,危害及清除. 岩矿测试, 1993, (4): 296-304.

[7]

胡清菁, 张超兰, 靳振江, 曹建华, 李强. 铅锌矿尾砂重金属污染物对不同土地利用类型土壤性质影响的典范对应分析. 岩矿测试, 2014, 33(5): 714-722.

[8]

林琳, 郑俊, 杨晓红, 缪丽娜, 许健, 杨笑. 湖州市不同土地利用类型土壤中多环芳烃的分布及来源. 岩矿测试, 2010, 29(6): 687-690.

[9]

郝红, 高博, 王健康, 周怀东, 陆瑾, 殷淑华, 朱成. 滦河流域沉积物中重金属分布特征及风险评价. 岩矿测试, 2012, 31(6): 1000-1005.

[10]

孙鹏, 李艳伟, 张连科, 李玉梅, 王维大, 余维佳. 包头市典型工业区表层土壤中重金属污染状况及其潜在生态风险研究. 岩矿测试, 2016, 35(4): 433-439. doi: 10.15898/j.cnki.11-2131/td.2016.04.016

[11]

赵庆令, 李清彩, 谢江坤, 李元仲, 姬永红, 庞成宝, 万淼. 应用富集系数法和地累积指数法研究济宁南部区域土壤重金属污染特征及生态风险评价. 岩矿测试, 2015, 34(1): 129-137. doi: 10.15898/j.cnki.11-2131/td.2015.01.017

[12]

钱贞兵, 孙立剑, 徐升, 陈超, 戴晓峰. 淮河流域安徽段土壤重金属元素分布特征研究. 岩矿测试, 2018, 37(2): 193-200. doi: 10.15898/j.cnki.11-2131/td.201710190168

[13]

储彬彬, 罗立强. 南京栖霞山铅锌矿地区土壤重金属污染评价. 岩矿测试, 2010, 29(1): 5-8.

[14]

谭科艳, 刘晓端, 刘久臣, 汤奇峰, 黄园英, 罗松光. 凹凸棒石用于修复铜锌镉重金属污染土壤的研究. 岩矿测试, 2011, 30(4): 451-456.

[15]

田衎, 杨珺, 孙自杰, 周裕敏, 邢书才, 封跃鹏. 矿区污染场地土壤重金属元素分析标准样品的研制. 岩矿测试, 2017, 36(1): 82-88. doi: 10.15898/j.cnki.11-2131/td.2017.01.012

[16]

余广学, 张金震, 王烨, 丁莉, 付志辉. 郑州市土壤重金属污染状况和质量评价. 岩矿测试, 2015, 34(3): 340-345. doi: 10.15898/j.cnki.11-2131/td.2015.03.014

[17]

王畅, 郭鹏然, 陈杭亭, 舒永红. 土壤和沉积物中重金属生物可利用性的评估. 岩矿测试, 2009, 28(2): 108-112.

计量
  • PDF下载量(13)
  • 文章访问量(59)
  • HTML全文浏览量(12)
  • 被引次数(0)
目录

Figures And Tables

武水河上游区域土壤重金属污染风险及来源分析

罗飞, 巴俊杰, 苏春田, 潘晓东, 杨杨